

Multidisciplinary approach to NPs characterization**Doctoral School, MSE-674**

Exam, 09.01.2025

Name	Surname	Sciper #
_____	_____	_____

Correct: 5; Wrong: -1; No answer: 0. Minimum grade: 60 points.

Multiple correct answer possible; Open book; 30 minutes.

Section 1

Q1: What values must be indicated when reporting a PSD?

- an average size value with the reference base (such as N, V)
- the powder density
- the crystallographic phase
- a span value
- an average size value

Q2: What are the physicochemical parameters that influence colloidal stability?

- dielectric properties of the solid
- temperature
- ionic strength
- pH
- particle size

Q3: What is the physical phenomenon considered in particle-particle electrostatic interaction in solution?

- attractive Coulombic attraction
- repulsive Coulombic repulsion
- repulsive overlap of EDL
- osmotic pressure
- overlap of polymeric chains

Q4: Where is the zeta-plane located?

- within the solid surface
- on the solid surface
- at the end of the Stern layer
- somewhere in the diffuse layer
- in the solution bulk

Q5: What is the physical phenomenon considered in photon correlation spectroscopy to evaluate the PSD?

- Brownian motion
- gravitation sedimentation
- light scattering
- surface potential
- surface charge density

Section 2

Q6: in X-ray Powder Diffraction the position of diffraction peaks

- Is sensitive to the X-ray wavelength.
- Is sensitive to the particle size.
- Is sensitive to the crystallite size.
- Is sensitive to the unit cell dimensions.
- Is sensitive to the different elements.

Q7: Peak broadening originates from

- Particle size
- Crystallite size
- Low density of the material
- Setup geometry
- Microstrain

Q8: Scherrer's equation

- Can be applied on high-angle peaks only.
- Is valid only for Lognormal crystallite size distributions.
- Is exact if the instrumental resolution contribution is deconvoluted from the peak broadening.
- Assumes microstrain-free crystallites
- Relates the peak height to the particle size

Q9: Microstrain

- Is the same as strain on microscopic crystallites.
- Can be caused by defects.
- Is present on nanoparticles only.
- Cannot be evaluated together with crystallite size.
- Causes a peak broadening with a different theta dependency with respect to crystallite size.

Q10: When doing a refinement

- The end of the refinement is reached when R_{wp} is smaller than 3.
- It is irrelevant to have a sensible starting model.
- You always get a number.
- You should always keep peak-shape functions fixed.
- You should know the instrumental contribution to evaluate correctly the crystallite size.

Section 3

Q11: What determines the intensity of scattered radiation in SAS?

- The wavelength of the incoming radiation
- The contrast between the scattering particles and the surrounding medium
- The temperature of the sample
- The polarization of the radiation beam
- The size of the sample holder

Q12: What is a key advantage of SAS techniques in structural analysis?

- Ability to study samples only in crystalline form
- High resolution for atomic-level structure determination
- Non-invasive characterization of structures in their native environment
- High sensitivity to thermal conductivity variations
- Exclusive applicability to metallic samples

Q13: How can the overlap of form and structure factors affect a SAS measurement?

- It simplifies data analysis
- It can obscure contributions from the shape and size of individual particles
- It only occurs in homogeneous systems
- It is irrelevant in most scattering experiments
- It eliminates the need for data corrections

Q14: Why is q -range calibration critical in SAS experiments?

- To match scattering results across different instruments
- To isolate isotropic scattering from anisotropic scattering
- To improve the spatial resolution of 2D scattering patterns
- To ensure accurate particle size determination
- To reduce noise in high- q measurements

Q15: How can SAS synchrotron experiments accommodate samples that are unstable under radiation?

- By reducing the beam intensity during measurements
- By using short exposure times with frame averaging
- By aligning the beam to avoid high-scattering regions
- By increasing the sample temperature during analysis
- By utilizing smaller sample-to-detector distances

Section 4

Q16: for which techniques in electron microscopy, inelastic scattering events are a mandatory prerequisite?

- Secondary electron imaging in SEM
- Energy dispersive X-ray spectroscopy in SEM or TEM
- electron diffraction in TEM
- Electron energy loss spectroscopy in TEM
- High-angle annular dark field STEM

Q17: for which of the following tasks would you use the SEM?

- find out, whether Pd-nanoparticles of 1nm size are on top or inside CeO₂ host crystallites of 50-100nm
- check with EDX the composition of the surface of a screw
- determine the crystal structure of nanoparticles of 20 nm diameter
- Get an overview on the morphology and size distribution of 500-700nm sized particles
- provide an atomically resolved image of a thin, crystalline membrane

Q18: which of the following parameters influence, whether lattice periodicity can be resolved in parallel illumination HRTEM?

- the beam diameter
- the thickness of the specimen
- the acceleration voltage
- the spherical aberration of the microscope lenses
- the specimen orientation

Q19: you have a mixture of Ta and TaO₂ nanoparticles of 200-300nm diameter and of 200-500nm sized SiO₂ particles. Which of the following conditions would you use to show which of the particles are metallic and which are oxides?

- SEM: Energy dispersive X-ray spectroscopy (EDX or EDX)
- SEM: off-axis SE image at 20keV
- SEM: BSE
- TEM: Electron energy loss spectroscopy
- TEM: High-resolution TEM imaging

Q20: what are the strengths of transmission electron microscopy?

- its capability to easily provide statistically relevant answers about large amounts of nanoparticles
- It can provide information from individual particles
- it is especially helpful in case of very thick pieces of material
- it has the capability to provide information about the chemical composition, the crystallographic structure as well as the morphology and the size of the same small piece material
- the resolution which can be reached in imaging is nearly identical with the small wave length of the beam electrons in TEM